Editing Mercury (planet)

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 4: Line 4:
 
Mercury is the first [[planet]] in the [[solar system]], which is closest to the [[sun]]. It is also the smallest planet with the shortest [[orbital period]] among the other planets, lasting only 88 earth days. Mercury was initially thought to be [[tidal locking|tidally locked]] to the sun. But it was later discovered that Mercury indeed rotates, but slowly. The planet is tidally locked at a [[resonance]] due to its elliptic [[orbit]]. A [[sidereal time|sidereal day]] on Mercury is 58 Earth days, 15 hours, and 30 minutes. A [[solar day]] on Mercury is 176 Earth days. For every two orbital revolutions around the Sun, Mercury rotates on its axis thrice. The other interesting fact about Mercury is its [[apsidal precession|orbital precession]] about 43 arc seconds per century, which proves [[general relativity]] more practically.
 
Mercury is the first [[planet]] in the [[solar system]], which is closest to the [[sun]]. It is also the smallest planet with the shortest [[orbital period]] among the other planets, lasting only 88 earth days. Mercury was initially thought to be [[tidal locking|tidally locked]] to the sun. But it was later discovered that Mercury indeed rotates, but slowly. The planet is tidally locked at a [[resonance]] due to its elliptic [[orbit]]. A [[sidereal time|sidereal day]] on Mercury is 58 Earth days, 15 hours, and 30 minutes. A [[solar day]] on Mercury is 176 Earth days. For every two orbital revolutions around the Sun, Mercury rotates on its axis thrice. The other interesting fact about Mercury is its [[apsidal precession|orbital precession]] about 43 arc seconds per century, which proves [[general relativity]] more practically.
  
Mercury is the second densest planet in the solar system, with a molten iron core that would make about 1800 km in radius.<ref> Finley, Dave (May 3, 2007). "Mercury's Core Molten, Radar Study Shows". National Radio Astronomy Observatory.</ref> For comparison, the total radius of Mercury is about 2440 km with a crust about 400 km thick. This molten core generates a measurable magnetic field due to the [[dynamo theory|dynamo effect]], forming a [[magnetosphere]] around the planet.
+
Mercury is the second densest planet in the solar system, with a molten iron core that would make about 1800 km in radius.<ref> Finley, Dave (May 3, 2007). "Mercury's Core Molten, Radar Study Shows". National Radio Astronomy Observatory.</ref> For comparison, the total radius of Mercury is about 2440 km with a crust about 400 km thick. This molten core generates a strong magnetic field due to the [[dynamo theory|dynamo effect]], forming a [[magnetosphere]] around the planet.
  
 
== Frequently Asked Questions ==
 
== Frequently Asked Questions ==
Help

Swyde is a collaborative science project that involves other members of the Swyde community members editing and refining your contributions here. By submitting your content, you agree to these terms and confirm that the above content belongs to you, and if copied, you have received permissions from the copyright holder to use it here. All your contributions will be licensed under the Creative Commons license. See copyrights for more details.