Editing Buoyancy

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
 
[[Category: Physics]]
 
[[Category: Physics]]
 
== Explanation ==
 
== Explanation ==
Buoyancy is an upward force acted on an object that is immersed in a fluid by the fluid itself. As the depth increases in a fluid, the [[pressure]] increases due to the weight of the fluid. Therefore, when an object of a certain height and a different density is immersed in the fluid, the fluid exerts a higher pressure on the bottom part of the object than the upper part where the fluid exerts a lower pressure. The net effect of this pressure difference will be an upthrust—an upward force called buoyancy. The buoyant force is equivalent to the weight of the fluid that is displaced when the object is immersed in it (Archimedes Principle).
+
Buoyancy is an upward force acted on an object that is immersed in a fluid by the fluid itself. As the depth increases in a fluid, the [[pressure]] increases due to the weight of the fluid. Therefore, when an object of a certain height and a different density is immersed in the fluid, the fluid exerts a higher pressure on the bottom part of the object than the upper part where the fluid exerts a lower pressure. The net effect of this pressure difference will be an upthrust—an upward force called buoyancy. The buoyant force is equivalent to the weight of the fluid that is displaced when the object is immersed in it.
  
 
== Frequently Asked Questions ==
 
== Frequently Asked Questions ==
 
=== Is buoyancy a fluid only property? ===
 
=== Is buoyancy a fluid only property? ===
 
No, buoyancy exists in solids too. It is quite intuitive if you consider the effects of friction in the case of solids. For example, when you submerge a ball into the water, there will be a buoyant force acting on the ball due to the pressure difference at the top and bottom of the ball. So the ball, being less dense, would naturally come up due to the pressure difference. Water being a continuum imparts a less resistance on the ball and allows it to come up. In the case of a solid medium, say if you put the same ball inside a container full of high-density sand particles, there will absolutely be a buoyant force acting on the ball. But the buoyant force will find it hard to overcome the [[friction]] between the sand and the ball. Buoyancy is negligible in solids.
 
No, buoyancy exists in solids too. It is quite intuitive if you consider the effects of friction in the case of solids. For example, when you submerge a ball into the water, there will be a buoyant force acting on the ball due to the pressure difference at the top and bottom of the ball. So the ball, being less dense, would naturally come up due to the pressure difference. Water being a continuum imparts a less resistance on the ball and allows it to come up. In the case of a solid medium, say if you put the same ball inside a container full of high-density sand particles, there will absolutely be a buoyant force acting on the ball. But the buoyant force will find it hard to overcome the [[friction]] between the sand and the ball. Buoyancy is negligible in solids.
Help

Swyde is a collaborative science project that involves other members of the Swyde community members editing and refining your contributions here. By submitting your content, you agree to these terms and confirm that the above content belongs to you, and if copied, you have received permissions from the copyright holder to use it here. All your contributions will be licensed under the Creative Commons license. See copyrights for more details.

Retrieved from "http://swyde.com/s/Buoyancy"